skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Titiunik, Rocío"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a practical guide for the analysis of regression discontinuity (RD) designs in biomedical contexts. We begin by introducing key concepts, assumptions, and estimands within both the continuity‐based framework and the local randomization framework. We then discuss modern estimation and inference methods within both frameworks, including approaches for bandwidth or local neighborhood selection, optimal treatment effect point estimation, and robust bias‐corrected inference methods for uncertainty quantification. We also overview empirical falsification tests that can be used to support key assumptions. Our discussion focuses on two particular features that are relevant in biomedical research: (i) fuzzy RD designs, which often arise when therapeutic treatments are based on clinical guidelines, but patients with scores near the cutoff are treated contrary to the assignment rule; and (ii) RD designs with discrete scores, which are ubiquitous in biomedical applications. We illustrate our discussion with three empirical applications: the effect CD4 guidelines for anti‐retroviral therapy on retention of HIV patients in South Africa, the effect of genetic guidelines for chemotherapy on breast cancer recurrence in the United States, and the effects of age‐based patient cost‐sharing on healthcare utilization in Taiwan. Complete replication materials employing publicly available data and statistical software inPython,RandStataare provided, offering researchers all necessary tools to conduct an RD analysis. 
    more » « less
  2. The regression discontinuity (RD) design is one of the most widely used nonexperimental methods for causal inference and program evaluation. Over the last two decades, statistical and econometric methods for RD analysis have expanded and matured, and there is now a large number of methodological results for RD identification, estimation, inference, and validation. We offer a curated review of this methodological literature organized around the two most popular frameworks for the analysis and interpretation of RD designs: the continuity framework and the local randomization framework. For each framework, we discuss three main topics: ( a) designs and parameters, focusing on different types of RD settings and treatment effects of interest; ( b) estimation and inference, presenting the most popular methods based on local polynomial regression and methods for the analysis of experiments, as well as refinements, extensions, and alternatives; and ( c) validation and falsification, summarizing an array of mostly empirical approaches to support the validity of RD designs in practice. 
    more » « less
  3. In this article, we introduce the Stata (and R) package rdmulti, which consists of three commands (rdmc, rdmcplot, rdms) for analyzing regression-discontinuity (RD) designs with multiple cutoffs or multiple scores. The command rdmc applies to noncumulative and cumulative multicutoff RD settings. It calculates pooled and cutoff-specific RD treatment effects and provides robust biascorrected inference procedures. Postestimation and inference is allowed. The command rdmcplot offers RD plots for multicutoff settings. Finally, the command rdms concerns multiscore settings, covering in particular cumulative cutoffs and two running variable contexts. It also calculates pooled and cutoff-specific RD treatment effects, provides robust bias-corrected inference procedures, and allows for postestimation and inference. These commands use the Stata (and R) package rdrobust for plotting, estimation, and inference. Companion R functions with the same syntax and capabilities are provided. 
    more » « less